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ABSTRACT

The introduction of a discounting term into the objective functional

can be troublesome in terms of analysis by the standard maximum principle

formulation. This is because it renders the Hamiltonian and the adjoint

equations depend explicitly on time. In finite horizon problems it makes

the switching point analysis difficult. In case of infinite horizon, which

is usual in economic problems, it does not admit long-run stationary equilibriums.

A technique discussed by Arrow [l] to alleviate these difficulties is applied

to various standard control problems occuring in economics and management

science. This transforms the Hamiltonian and the corresponding adjoint

system into an explicitly time-independent form and hence autonomous in

all bu. one case. A natural consequence of the transformation is current-

value interpretations of the Hamiltonian and the adjoint variables. Finally,

it is noted that for the transformed systems so obtained, Hamiltonian ,# =

constant, no longer provides the fi:st integral of the resulting boundary-

value problems as usual in the autonomous cases.
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1. A Continuous Optimal Control Problem-

Consider a system, economic or other, evolving in time. At any time

t, the system is in some state, which can be described by a vector x(t).

In an optimization problem, there is some possibility of controlling

the system. Thus, at any time t, there is a vector u(t) which a decision

maker can choose from a given set Q(t). The u(t) are known as control

variables.

The dynamics of the system is described by differential equations

known as state equations.

(1.1) x = f(x,u,t) ; x(O) =x

By sui'•ble choices of controls over time, alternative histories of

the process can be achieved. As is usual in economic analysis, we assume

that these histories can be valued in some way. Usually this is done by

assuming, at each moment t, a felicity function F(x(t),u(t),t) and then

summing these felicities over time.

Furthermore, in a finite horizon problem, since the horizon T is

not the end of the world, the states at T will usually have some value.

This value will be referred to as scrap value and will be denoted by a

function S(x(T),T). Now the optimal control problem is to
T

(1.2) maximize S(x(T),T) + J F(x(t),u(t),t)dt
[um(t)n(t)} 0

subject to (1.1).

For convenience, we also define the return function by

T
(1.3) V(X,t) = max [S(x(T),T) + f F(x(t),u(t),t)dtj

u(t) to

The usual Hamiltonian );, in this case, is

(1.4) .O= F(x,u,t) + pf(x,u,t)



where the vector of adjoint variables p satisfies

(1.5) p = - ; p(T) = -(
ax ax(T)

From the Hamilton-Jacobi Theory, we also know that

(1.6 ) p -

Therefore, we can call p the marginal return v- -jr.

Since, in economics, it is customery to assume that, in some relevant

sense, future felicities are discounted relative to the present. To include

this feature, let c(t) be the discount rate, we can restate our problem

as
T

(1.7) maximize S(x(T),T)c(T) + Y t(t) F(x(t),u(t),t)dt
uCQ 0

subject to (1.1).

The return function definition (1.3) will be correspondingly modified

to be
T

(1.8) V(x't = max [S(x(T),T)'/(T) + f t(t) F(x(t),u(t),t)dt]
u(t) to

Since the return function in (1.8) is evaluated in terms of present

value at time t = 0, we can divide it by dt o) to obtain the current-value

return function:

(1.9) W(x,t ) = V(x'to)C/ (to)

The usual Hamiltonian .4- will be

(1.10) );U = o(t) F(x,u,t) + pf(x,u,t)

where the adloint vector or marginal returns p satisfy

-x t) p - , p(T) = e(T) )
"-x -x F Xx(T)

and from the Hamilton-Jacobi theory,

(1.12) p = --x
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Since W in (1.9) is a current-value return function, we can obtain

current-value marginal returns, X, by differentiating (1.9) with respect

to the state x, i.e.,
bw v 1 /

(1.13) = = 6- J "

Substituting p from (1.13) in (1.10) and then dividing (1.10) by 0(t), we

get, what we define to be the current-value Ramiltonianj,4 . Thus,

(1.14) $4 = J.J/t(t) = F(x,u,t) + Xf(x,u,t) .

Since 01(t) is positive, the controls chosen to maximize 'P, as in

Pontryagin's maximum principle, are same as those chosen to maximize K.

All we have to do now to make the transformation complete is to express the

current value adjoint vector X in terms of current-value Hamiltonian

From (1.11) and (1.13),

(1.15) d[o(t)X] = &X + ceX [; (T)X(T) = t(T) 6S
dt ax ;( (T)

On dividing through by a, we obtain

(1.16) X = q(t)A - X; (T) =
(Ix 6x(T)

where,

(1.17) q(t) = - &(t)/I(t)

Note that q(t) is essentially a short-term interest rate corresponding to

the system of discount factors, ct(t). The definition (1.17) can be integrated

to yield the familiar form
t-J' q(t)dt

(1.18) 
I(t) = e 0

for discounting derived from a short-term interest rate varying in time.



Infinite Horizon Case

In case of infinite horizon, which is frequently the case in economic

problems, the objective function is

(1.19) max J a(t) F(x(t),u(t),t)dt
ueO 0

subject to (1.1).

Where, for (1.19) to converge for a constant felicity F, one requires

(1.20) a (t)dt < •

0

It is frequently appropriate to make an assumption of stationarityl,

F(x,u,t) = F(x,u)

(1.21) f(x,u,t) = f(x,u)

q(t) = r

where the right hand sides are independent of t with r constant. it follows

from its definition (1.17) and the convention o(0) = 1, that

-rt
(1.22) i(t) = e , r > 0 for (1.20).

With (1.21), we can rewrite (1.1), (1.14), and (1.16) as

(1.23) = f(x,u) , x(0) = x

(1.24) *W= F(x,u) + Xf(x,u) A
(1.25) X = rN - ýix

Note that (1.25) is written without the transversality condition in ( 1 . 1 6 ).2/

Since t does not enter explicitly into the system (1.23 - 1.25)

3/
such a system is termed autonomous.- In such cases, considerable interest

is usually focused on its stationary points or equilibria, where all motion

ceases; i.e., the values of x and X for which A - 0 and ; = 0. This

notion in economics is that of long-run stationary equilibrium. This is

define? by the triple (x, X, u) satisfying,



f f(x,ii) = 0

(1.26) r=

Now we will state an important sufficiency theorem without proof.-4'

A Sufficiency Theorem

Let (x*(t), *(t), u *(t)) be'a Pontryagin path, (a path satisfying

the maximum principle), i.e.

** " * *

= f(x ,u ) , x (0) X

(1.27) = -r

2J x' * * * *{, u > 4(x , X,

Further assume,

(1.28) 0'. °(x,X) = max J(t(x,u,Q) is a concave function of x for given X, and
U

(1.29) (t) , X> 0; (x,ý,u) from (1.26)

Then, the Pontryagin path [x*(t), X*(t), u (t)} is an optimal path.

5,
2. An Infinite Horizon Discrete Optimal Control Problear-

For the discrete case, we will treat the following control problem.

(2.1) max ot F t(x(t)'u(t))
uen t=o

subject to the difference equation

(2.2) Ax(t) = x(t+l) - x(t) = f t(x(t),u(t)); x(0) =x

where, for (2.1) to converge for a constant felicity F, we require a rela-

tion analogous to (1.20) in the continuous case, i.e.,



(2.3) E 1t <
t=o

Assume also that c = I.
0

Standard Hamiltonian (J%.) Formulation

To form k, we adjoin a vector of present value adjoint variables

p(t+l), to the state equation (2.2), and add this with the summand in

(2.1). Thus:

(2.4) 2Tb = t F t(xu) + p(t+l)f t(xu)
the

where, from the theory of/maximum principle, the vector p satisfies the

difference equation:

(2.5) Ap(t) = -

)x (t)

Current-Valie Hamiltonian (.14-) and Current-Value Adjoint Vector )

FirsL we divide. Xin (2.4) by at to obtain,

(2.6) "W= A/ht = F (xu) + p(t+l) f (xu)

Now we define the current-value adjoint vector k, as in (1.13), i.e.,

(2.7) X(t) = pt/at

With (2.7), we can rewrite--Akin (2.6) and the difference equation in (2.5)

as:

(2.8) -4= Ft(x,u) + X(t+l) f t(x,u)$t

(2.9) AX(t) = q(t)X(t+l) a t)-

where,

(2.10) t = t , and

t t

C1 t t
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It is frequently appropriate to make the important stationarity

assumption, i.e.,

Ft (x(t),u(t)) - F(x(t),u(t))

(2.12) ft (x(t),u(t)) = f(x(t),u(t))

St B 0

where the right hand sides are explicitly independent of t with 0 constant.

Under the stationarity assumption (2.12), tt+l f t, so that

O= t (since o = 1). The condition (2"3) becomes 0 < 1.

In usual economic processes with infinite horizon, the stationarity

(2.12) is assumed to hold. One such case is treated in (8]. In this case,

1+n
(2.13) I+• , n < r

where, n is the rate of population growth and r is the social discounting

rate. Using (2.10, 2.11, 2.13), the current-value system (2.8, 2.9) for

this case, assumes the autonomous form.

F(x,u) + X(t+l) f(x,u) 1+r

(2.14) AX(t) = (r-n) X(t+l) .
bx Ct)

Finally, we note that a sufficiency theorem, analogous to the one

in the continuous case, holds in this case.

3. An Optimal Control Problem with a Constant Lag in Control6/

In this section, we shall treat an important special case of the

constant lag optimal control problem, i.e., a problem in which the lag

appears only in the control variable. Mathematically stated, the control

problem is.

(3.1) max I o(t) F(x(t),u(t))dt
uCQ 0



subject to the differential-difference equation

(3.2) x(t) = f(x(t), u(t), u(t-T)),

with the initial conditions (x(O) = x and u(t) = 1(t) for te[-T,O).
the

Since/functions F and f are already assumed to be explicitly

independent of time t, all we need to complete the stationarity assumption,

similar to (1.21) in Section 1, is to assume:

-rt
(3.3) a(t) = e , r > 0.

Sttndard Hamiltonian () Formulation

Specializing the results in Kharatishvili [6] for the problem (3.1, 3.2), we

obtain the HamiltonianJ-L as,

(3.4) JL(x(t), x(t+T),p(t), p(t+T), u(t), u(t-T), u(t+T)) = t(t) F(x(t),u(t))

+ p(t)f(x(t),u(t),u(t-T))

+ [0(t)F(x(t),u(t)) + p(t)f(X(t),U(t),u(toT))]t=t+•

where the present-value adjoint vector p(t) satisfies the differential-

difference equation,

(3.5) f(t) ýX(t)

Note that the first term in the square brackets in (3.4) does not depend on

u(t), and hence it can be dropped from the HamiltonianJ", if desired. We

will, however, keep it to show the relationship between Kharatishvili [6] and

Budelis-Bryson [4].

Current-Value Hamiltonian (.V-) and Current-Value Adjoint Vector (X)

To get the current-value Hamiltonian ,V-, we divide in (3.4) by a(t)

as before and rewrite it as,

(3.6) ,.( ) = O = F(x(t),u(t)) + R(t) f(x(t),u(t),u(t-T))I(t) 1(t)

U(t+T)F(x(t+T),u(t+T)) + P(t+T) f(x(t+T), u(t+T), u(t)).
t(t)
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Now, as in (1.13), we define the current-value adjoint vector X(t) by the

relation,

(3.7) X(t) = p(t)/0(t)

With this definition of X(t) and the fact that a(t + T) = C(t)C(T)

for the form of 01(t) assumed in (3.3), we can rewrite the current-value

Hamiltonianf-,kin (3.6) as:

(3.8) A4(x(t),x(t+'r),X(t),X(t+T),u(t),u(t-,r),u(t+T)) - F(x(t),u(t))

"+ X(t) f (x(t),u(t),u(t-T) + Cr(T)F(x(t+T),u(t+¶))

"+ I(T) X(t+T) f (x(t+T),u(t+T),u(t)).

It is a simple matter to obtain the corresponding adjoint equation

by differentiating (3.7) and using (3.3, 3.5, 3.7). The equation is,

(3.9) X(t) = r?(t) - "xJA
Fix(t)

Once again, we have been able to transform the original non-auto-

nomous system (3.2, 3.4, 3.5) into the autonomous system (3.2, 3.8, 3.9).

This transformation, as noted before, is a useful one in analyzing the

long-run stationary equilibrium of the economic system under consideration (81.

We will also state the maximum principle in this case.

Theorem: Maximum Principle:

If x (t), u (t), X *(t) is an optimal trajectory, then it must

satisfy (3.2, 3.9), and

(3.10) * (X (t),x*(t+T), X(t),X(t+T), u*(t),u*(t-T)u (t+T)) >

Y(x*(t),x*(t+T), * (t), *(t+T),U,U1t-T),u*(t+T)

VueQ and 't.

Budelis and Bryson [4] use calculus of variations to arrive at some-

what restricted results. They define their Hamiltonian, B4 corresponding

to which, the current-value Hamiltonian,- B, is

B'i
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(3.11) jB tB F(x(t),u(t)) + XB(t) f(x(t),u(t),u(t-r))

where

(3.12) XB = r X B(t) - x(t)

Assuming the optimal control in the interior of Q, they derive the

necessary condition- , which in the current-value form, is

a"• +-4 [ ( 'L) = 0

(3.13) u (t-- + - (T) u(tT)J ttt+ =

4. An Optimal Control Problem with Continuous Lags -/

The problem of this section arises in ge..ralizing the

problem treated in the previous section with respect to its lag structure.

Mathematically, we can state the problem as one of maximizing (3.1) subject

to the integro-differential equation (also known as phase equation),
t

(4.1) x = f(x(t),u(t)) + f g(x(T)Ou(T), T, t)dT

with the initial condition& x(t) = x(t), Vt < 0 and u(t) = u(t) •ft < 0.

We will elso assume u(t) to be of the form (3.3).

Standard Hamiltonian (Jý) Formulation

With a slight extensionof thecesults in.Bate[2], we can define.)A as

(4.2) Zj-(x(t), p(T > t), u(t)) = 01(t)F(x(t),u(t)) + p(t)f(x(t),u(t))

+ f p(T)g(x(t),u(t),t,T)dT
t

where, as before, the adjoint vector p(t) satisfies the integro-differential

equation:

(4.3) p(t) = "x(t)

Remark; We advise the reader to compare the integrals in (4.1.) and (4.2).
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Current-Value Hamiltonian (W) and Current-Value Adioint Vector (W)

As before, the current-value Hamiltonian '• is obtained by dividing

'J( in (4.2) by c(t), i.e.,

(4.4) ~ F(x(t),u(t)) + pit) f(x(t),u(t))(4.4) •( )= a~) = (t)

+ yt) S p(T)g(x(t),u(t),t,T)dT
t

Now we define X(t) = p(t)/a(t) as in (3.7). With this definition

and the observation that e(t) = t(t-T)O(T) for the exponential form of C(T) as

assumed in (3.3), we can rewrite the current-value Hamiltonian.A in (4.4) in

terms of the variables x(t), X(T > t), and u(t), i.e.,

(4.5) K(x(t),X(T > t),u(t)) - F(x(t),u(t)) + X(t) f (x(t),u(t))

+ j c(T-t)X(T)g(x(t),u(t),t,¶)di.

t

Now we can differentiate the defining relation for X(t) and then

using (3.3, 4.3, 4.4) we can obtain -he corresponding adjoint equation

(4.6) X(t) rX(t) - axVýx(t)

For this case, we will expand Y-- to see that the adjoint equation
5x (t)

for X(t) is an integro-differential equation with leads as opposed to the

state equation in (4.1).which is an integro-differential equation with lags.

In its expanded form, the adjoint equation (4.6) is,

(4.7) X(t) - [r - fx (x(t),u(t))]X(t) - FX (x(t),u(t))

"- t c(r-t)X(.)g x(X(t),u(t), t, T)dT,

where the subscript x denotes partial differentiation with respect to x.

Unlike the first three sections, the system (4.1, 4.5, 4.6) in not autonomous

in general. We must mention, however, that in the economic model developed in (91
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has fenction g explicitly indepentdent of x. This will render the

adjoint systems (4.7) explicitly iiidependent of time. Furthermore, in (9],

the llamiltonian-0-and the equasion (4.1) depends on time t in such a way

that it permits us to prove the existence and uniqueness of the long-run

stationary equilibrium.

Finally, a slight extens:_on of Bate [2] of this section, which can

be stated in current-value form as the following :heorem:

Theorem: Maximum Principle: If F, f, g are differentiable with respect

to x, and if u () is an optimal control for the :•ystem (3.1, 4.1), with

x (.) as the correspcnding trajectory, then it is necessary that

i) There exist a nonzero ve:tor function of time X(.) satisfying

(4.6) with x(.) = x (.) and u(.) =u ).

ii) The optimal control u (t) satisfies

*Wx (0), (T * t),u (t)) > *(X (t),X (r > t), U) wen.

5. Concluding Remarks.

Except for the continuous lag case in section 4, the current-value

transformation renders the system explicitly time-independent and hence

autonomous, under the stationarity assumption. Such systems allow long-run

stationary equilibriums, a concept which is extremely important in economic

analyses.

A natural consequence of the transformation is the current-value interpre-

tations of the transformed adjoint variables X. That is, X(to) is a

vector of marginal returns associated with the phase vector x(to) when the

returns are assumed to be discounted to time t = t and not to time t - 0 as
0

would be the case for the standard adjoint vector p(t ). Discounting the

returns to time t = t is more natural since this is the beginning of the

range of interest at that time.
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We also note that given the current-value Hamiltonian-,4-, the

relation which the current-value adjoint vector X must satisfy, has

the same form in all cases, i.e.,

(5.1) X(t) = q(t)X(t) - ýX(t)

where q(t) -(t)/t(t).

It is very important to emphasize the fact that the form of the equation

for the current-value adjoint vector X in relation to the current-value

Hamiltcnian0 is different from the relationship between the form of the

equation for the standard adjoint vector p and the standard HamiltonianA4.

The impact of this difference can be seen if we take the time derivative

of the current value Hamiltonian.--,

d, ;3t x ?,• X 6J u du

Since.1"-is explicitly independent of time, the first term is zero.

Since, either =0 or 0 on the optimal path, the last term vanishes
du dt

on this path. Therefore, we have

(5.3) d- = Affi z ý--
dt 8x

Furthermore, the canonical form of the state equation remains unchanged
because x -f _ __' dit

becaue. This together with (5.1) reduces -L- in (5.3) as

d(. - 6' + c [qX - 8
(5.4) dt 6x ax

#0

Notice, that if-,/ were independent of time, i.e., if original system

were autonomous, d 0. This meant thatJ-'= constant would have provided

the first integral of the resulting boundary value problem. Not so (as noted

before in Footnote 3), however, in the transformed autonomous system.



-14-

FOOTNOTES

1. This entirz section is based on [I, Chap. 21. For economic problems

of this type; see [1,51.

2. For an excellent discussion of transversality conditions in infinite

horizon cases, refer to [E, Chap. 2].

3. Ic should be warned that on account of the nonstandard form of (1.25)

in the autonomous system (1.23 - 1.25),.l= constant no longer provides

the first integral of the two-point boundary-value problem (1.1 , 1.16)

in the finite horizon case and the problem (1.23, 1.25) in infinite

horizon case.

4. For a partial proof of this theorem, see [1, Chap. 2].

5. This type of problem in economics are either the discrete counterpart

of the problem in Sec. I or they are discrete approximation of complex

problems involving lags [7,9].

6. This type of problems frequently occur in economic theory. The usual

examples are models involving labor where it takes a fixed amount of time,

T, to train a labor. Such mcdels are treated in [3,8].

7. To put Budelis-Bryson [4] results in relation to Kharatishvili (6], we note

i) N + cf () • BItt+T cf. (3.8 and 3.11)

ii) X=B cf. (3.9 and 3.12)

S... . + B ( B) = 0 cf. (3.10 and 3,13)
au(t) )u(t) + u(t-T) t=t+T

8. This is the most general problem treated in this paper. The existence

theory for this problem is still incomplete. Necessary conditions have

been obtained by Bates [2] for a problem of slightly less general form.
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In economics, this problem provides a more general and more realistic

framework than the constant lag problem located in the previous

section. In [9], we apply this theory to a heterogeneous labor

model. Several other economic applications are possible, however,

the only one reported in the economic literature is in [9].
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